If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-72x+105=0
a = 1; b = -72; c = +105;
Δ = b2-4ac
Δ = -722-4·1·105
Δ = 4764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4764}=\sqrt{4*1191}=\sqrt{4}*\sqrt{1191}=2\sqrt{1191}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-2\sqrt{1191}}{2*1}=\frac{72-2\sqrt{1191}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+2\sqrt{1191}}{2*1}=\frac{72+2\sqrt{1191}}{2} $
| 4(v+3)=7v+24 | | 4+22=x+10 | | 6a+2/8+2=11a+21/16 | | 1/3c=12 | | 90=5x+2+3 | | 7x-5(2+4)=16x | | 29=x/3+4 | | 560+28(h-40)=896 | | 2(x-3)=-6x-14 | | 4x-2=3x-30 | | 3.3x=8.58 | | -14x+4(2x-3)=-20-5x | | 8x-5x=2+10 | | v+2.99=6.93 | | 8x-14=-14 | | 2=34/y | | 47-3x=-3x+48 | | 0=2x-28 | | 2x+6=5x+33 | | 6(x+3)+9=-3 | | 4(y-6)+7y=7 | | 6(x+3)+9=3 | | k+61=42 | | 8x-5x+9=27 | | 720=120+100+120+120+2x+10 | | 8x-5x=9=27 | | x+20+x+20+2x+26=30 | | p+51=79 | | 14x-5(6+2)=7x | | 3x÷2=20 | | 1/6b=1/2 | | 8=33y |